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ABSTRACT 

We show that the ad hoc regulator of Coleman and de Shalit for elements 
of K2 of curves evaluated on a holomorphic differential is the same as the 
syntomic regulator of the same elements cup produced with the same 
differential. Combined with the results of Coleman and de Shalit this 
gives a relation between syntomic regulators and special values of p-adic 
L-functions. The main technical innovation is the notion of a local index 
- -  a kind of generalized residue. 

1 .  I n t r o d u c t i o n  

Let C / C  be a smooth  complete curve, f ,  g E C(C) two ra t ional  functions on C. 

In  [Bei80], Beil inson defines the complex regulator  of f and g, 

r c ( { f ,  g}) e H I ( C  ~", R(1)), 

such tha t  the following formula is satisfied when w E H ° ( C ,  1 ~ c / c )  is a 

holomorphic 1-form on C: 

(1.1) 1 fc l°glgl2dl-i-3~Aw" re({/,g})U[~]= ~ ¢c) 
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One can show that r c  is antisymmetric and satisfies the Steinberg relation and 
therefore defines a map 

Beilinson, following Bloch, shows the following theorem: 

THEOREM 1 (Bloch, Beilinson): If E / Q  is an elliptic curve with complex multi- 
plication, then there exist f ,  g E Q(E) such that 

where w E H'(E, flLlq), aftg E Q and 0 is a known transcendental period. The 
L-function L*(E, s) is the usual L-function multiplied by the Gamma factor. 

In [CdS88], Coleman and de Shalit gave a padic analogue of formula (1.1). 
Suppose that (21% is a smooth complete curve with good reduction (the results 
of [CdS88] apply in some greater generality). Then they define a padic regulator 

The value of rP,c on a symbol { f ,  g )  with f ,  g E q(C) is defined to be the 
functional on holomorphic 1 forms given by 

Briefly, the meaning of this formula is as follows: Coleman's padic integration 
theory allows (as will be explained below) to define a function 

unique up to a constant. If the divisor o f f  is (f) = C ni(xi), then one defines 

Coleman and de Shalit used their regulator to derive an analogue of Theorem 1. 
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THEOREM 2 (Coleman, de Shalit): For the same E, f,g, and w as in Theorem 1, 

let p be a pr ime that splits in the CM Reld orE. Then 

rp,E( { f  , g})(W) = al,g~pLp( E, 0), 

where Lp(E, s) is the p-adic L-function of E, al, ~ is the same as in Theorem 1 
and ~p is a p-adic period (into which we have pushed an Euler factor at p to 
keep the exposition simple). 

We remark that  the point 0 is outside the interpolation range, so the p-adic 

formula cannot be recovered from the complex one. 

The formula (1.3) is derived in an ad hoc manner from its complex counterpart  

(1.1). However, the relation with the value of a p-adic L-function seems to 

indicate tha t  it is in some sense the "correct" p-adic formula. On the other hand, 

there is a general method of assigning p-adic regulators to elements of K-theory, 

namely the construction of syntomic regulators. The purpose of this work is to 

show that  on K2 of curves these constructions are very closely related. 

Let L/Qp be a finite extension with residue field a and let Z/O L be smooth 

and surjective (i.e., not an L scheme) with generic fiber ZL and special fiber 

Z~. Then Gros [Gro90] and Niziot [Niz97] define regulators (-- Chern characters) 

from the K- theory  of Z into syntomic cohomology. This last cohomology has 

several versions by now. They are all essentially the same in the projective case. 

We will use the version developed by us in [Bes98a]. With the notation of loc. 

cit., the regulator takes the form 

2 i - j  • chi,j: Kj (Z) --+ H;y n (Z, ~1. 

In this work we will only be interested in the case where i = j = 2 and Z is 

projective and of relative dimension 1. Then it can be shown that  

H2y (Z (Z /L) n , ~ R L • 

As Z~ is a smooth and projective curve over a finite field, it follows from [Har77] 

that  Ki(Z~) is torsion for i _> 1. The localization sequence in K- theory  shows 

.that 

K2(Z) ® Q -~ K2(ZL) ® Q. 

Since the target of the Chern character is an L-vector space, it induces a map 

rsyn: K 2 ( Z L )  @ Q --~ H~R(ZL/L). 
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Let C = ZL @ C_~. Then one can write the following diagram: 

(1.4) K2(ZL) ®Q ~"  , H~R(ZL/L ) 

K2(C) ® Q H~R(C/C~) 

1 Poincar~ duality 

K2(Cp(C)) ® Q Hom(H~p.(C/Cp), C_~) 

Hom(H° (C, ab /q ,  ), C.p) _ _  Hom(H° (C, a~ /% ), Cp). 

Here, the map given by Poincard duality is (to fix signs) 

a ~-+ (/3 +-+ tr(fl U a)). 

Our main result is then 

THEOREM 3: The diagram above commutes. 

Note that  what the theorem says is essentially that the regulator of Coleman 

and de Shalit computes "part" of the syntomic regulator, namely the value of 

the syntomic regulator, thought of as a functional on H~R via Poincar6 duality, 

on the subspace of holomorphic forms. The theorem of Coleman and de Shalit 
suggests that,  rather than that  their regulator gives only part of the information, 

it is in fact the syntomic regulator that  should be modified to land in a smaller 
subspace. In the corresponding complex situation, one uses the action of complex 

conjugation to cut down the target space to the right size. Is there a similar 

procedure in the p-adic situation? 
The proof of the main theorem turns out to be fairly simple, once one makes 

explicit the two sides of diagram (1.4). The new idea involved is a kind of a 

residue theorem, Corollary 4.11, which is similar in spirit to the reciprocity law 

proved by Coleman in [Co189]. 
The structure of the paper is as follows: In section 2 we recall the basics of the 

theory of Coleman integration we need from [CDS88] and in particular explain the 

formula (1.3) for the p-adic regulator. In section 3 we use the theory developed 

in [Bes98a] to write an explicit one-form representing the syntomic regulator of 

an element of / (2  on an open part of Z. Using the formula of Serre for the cup 
product in de Rham cohomology on a curve we reduce the proof of the main 



Vol. 120, 2000 SYNTOMIC REGULATORS II 339 

theorem to a formula (Proposition 3.4) relating residues and Coleman integrals. 

In section 4 we define local  indices,  which are some kind of a generalization 

of residues that  make sense out of the residue of the log function in some cases. 

Our main reciprocity law', Proposition 4.10, should be considered as an extension 

of the residue theorem to these generalized residues. The final section verifies 

Proposition 3.4 and thereby completes the proof of the main theorem. 
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Rob de Jeu and Tony Scholl for helpful conversations. We would also like to 
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2. p-adic  i n t e g r a t i o n  

Our basic setup throughout this work will be as follows: K is a complete subfield 

of C_~ with ring of integers OK and residue field ~. Let X/OK be a smooth 

projective and  surjective scheme of relative dimension 1 with generic fiber XK 
and special fiber X~. Let Y C X be an open affine subscheme, smooth and 

surjective over OK. The special fiber of the complement of Y is a union of a 

finite number of points: X~ - Y~ = { e l , . . . ,  e~}. 

To the situation above one associates a "basic wide open", in Coleman's 

terminology (see [CDS88, 2.1]). For r < 1, consider the rigid space Ur obtained 

The formal definition of Ur is, following Berthelot, as follows: If Y~ is locally 

in X~ given by the equation h = 0, with h the reduction of a function h on 

X, then Ur is locally given by the inequality ]hi > r. While the definition de- 

pends on the choice of the local lifts h, the inverse limit U = lim U~ does not, 
( r - -+l  
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in the sense that  any two choices of local lifts give the same Ur for sufficiently 

large r [Ber96]. The spaces of functions and one-forms, A(U) := ~ r-~IA(U~) 

and f t l (U) := lin~ r_~lf~l(u~), are the spaces of "overconvergent" functions and 

one-forms. Inside U one has the "underlying affinoid" in Coleman's terminology, 

which is the space obtained by throwing away from XK the corresponding open 

discs of radius 1. 

We will need the notion of Frobenius endomorphisms on U. One first defines 

these on Y~. We have some Yt/Fq, for some q = p* such that Y,~ ~ y l  ~Fq t~. 
r Consider the a-morphism ~o = Fry, ® ida. 

Definition 2.1: A F r o b e n i u s  e n d o m o r p h i s m  of Y~ is any ~o obtained in the 

way described above. The integer q will be called the degree of the Frobenius 

endomorphism. 

An important  remark is that any power of a Frobenius endomorphism is again 

a Frobenius endomorphism. 

THEOREM 2.2 (Coleman [CDS88, Theorem 2.2.]): For any Frobenius endomor- 

phism ~ there exists a rigid analytic map ¢: U -~ U reducing to ~ (i.e., ¢: Ur -~ 

Us with s < r sufficiently near 1). Any such ¢ will be called a Frobenius endo- 

morphism of U. 

The proof in loc. cit. is for K = Cp but works in general. We will call a map 

¢ as above a Frobenius endomorphism of U. Clearly one obtains an operator ¢* 

on A(U) and ~I(U).  

Example 2.3: For X = p l  and Y = Gm we can take U~ = {r < [z[ < l / r} ,  ¢)cp 
¢(z) = zp, ¢: V~ -~ V~p. 

We now sketch Coleman's integration theory on U. See [CDS88] for a full 

account. For simplicity and compatibility with loc. cit. we will assume from now 

until the end of this section that K = Cp, hence a = ~'p, and set C = XK. The 

space U decomposes se t  t h e o r e t i c a l l y  into a disjoint union of residue discs U, 

over x C X(Fp). When x E Y(Fp), U~ is the collection of closed points of C 

reducing to x and is isomorphic to the open unit disc {]z t < 1} (because X is 

smooth) via some local parameter which we denote zx. For each r < 1 and each 

ei, the residue disc of ei in Ur is the collection of closed points in U~ reducing 

to ei and is isomorphic to an open annulus {r < [z[ < 1} via a local parameter 

zel. Here we assume that  ze~ extends to a local parameter for the residue disc 

of ei in C. This fixes an o r i e n t a t i o n  for the annulus ei (see [Co189, II] and the 

discussion below in section 4). The pro-space Uel is the inverse limit of these 
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annuli. We have 

and 

~tl(U,) = A(U,)dz~ 

A(Ux) = {f(z)  = ~ a,~z n converging for ]z I < 1}, 
n ~ 0  

when x e Y,~(/~p), or 

A(U~) = {f(z)  = 

o o  

E anzn converging for r < Izl < 1 for some r < 1}, 
n ~ - - O O  

when x -- e~ for some i. In both  cases we have set z = z:~. 

Definition 2.4: The annuli Ue~, with the orientation discussed above, are called 

the annuli ends of U and their collection is denoted End(U). 

In fact, we will abuse the notation and will usually write ei for Ue~. To confuse 

things further, we will sometime use ei to refer to the full residue disc of ei in C. 

The intention should be clear from the context. 

Definition 2.5: The residue of the form w = y~,~°°___oo a,~z~,dze~ along the annuli 

ei is given by 

aese~ w = a-1.  

The residue is independent of the choice of parameter.  

Coleman's theory allows one to integrate certain locally analytic one-forms. 

One first needs to make a choice of a branch of the p-adic logarithm. 

Definition 2.6: A branch of the p-adic logarithm is any locally analytic homo- 

morphism log: C~ --+ C_.p with the usual expansion for log around 1. Such a 

function is determined by choosing zr E C_.p such that  [r[ < 1 and declaring 

log(~r) = O. 

Suppose a branch of the p-adic logarithm has been chosen. We define Alog (Ux) 
to be A(U.) if x E Ys(Fp) and to be the polynomial ring in the function log(za~) 

over A(U~) if x = ei. This ring is independent of the choice of z~, because it can 

be shown that  the difference of the logs of two local parameters is analytic on 

Ue~. Set fl~og(Ux) := Alog(Ux)dz~. Then one defines locally analytic functions 

and one-forms on U by 

Ato~(U) := 1-I Alog(U.), fl~o~(U) := 1-[ ft~og(U.). 
x 
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There is an obvious differential d: Aloe(U) -+ f~oc(U). One easily checks that this 
is surjective. The point is that  by adding logs we are able to integrate dz/z .  The 

inverse image under d is very big, because one can choose a different constant of 

integration at every x. Coleman's theory isolates a subclass of locally analytic 

differential forms that can be integrated uniquely up to a global constant. This is 

done using the Frobenius endomorphism ¢. It acts on locally analytic functions 

and differential forms in a way compatible with the differential d. Coleman's idea 

is now as follows: One constructs a certain subspace M(U) of Ato~(U), which we 

call the space of C o l e m a n  func t ions ,  and a vector space map (integration), 

which we denote by f or by w ~-+ F~, from M(U) @A(U) ~1(U) to M ( U ) / C p .  1. 

The map f is characterized by three properties: 

1. It is a primitive for the differential in the sense that dF,~ = w. 

2. It is Frobenius equivariant in the sense that f(¢*w) -- ¢* f(w).  

3. If g 6 A(U), then Fd9 = g + Cp. 
The construction relies on a simple principle: If f has already been defined on 

some space W, and w 6 f~oc(U) is such that there is a polynomial P(t)  with 

C_,p coefficients such that P(¢*)w = ~ 6 W, then the conditions on the integral 

force the equality P(¢*)F~ = F ,  + Const. When P has no roots of unity as 

roots this condition fixes F~ up to a constant. Starting with W0 = dA(U) one 

finds a unique way of integrating all w 6 W1 = f~l (U). One defines recursively 

Wi+I = ( f ( W i ) ) .  f~I(U) and checks that the principle above permits extending 

f uniquely to Wi+l. Finally one sets M(U) = [Ji f Wi. The entire theory turns 

out to be independent of the choice of ¢. 

In particular, suppose w, ~ are rigid forms on U. Coleman's theory then finds 

a canonical (up to constant) F, :  U --+ C_,p such that dF, 7 = ~?, and FF,.~ such that  

dFF,.,~ = F, 7 • w. One can show that if g 6 A(U), then Fdlog(9 ) = log(g). Now we 

can continue to define 

Flog(g).oJ = FFdlog(g)'~- 

Coleman and de Shalit show that for a rational function g 6 Cp (C) there is a 

canonical extension of Flog(g).~ to C -  {x: ord~ g # 0}. The extension is obtained 

by covering this set by basic wide opens and gluing the resulting integrals. 

In some situations, notably when f and g in (1.3) have a common singular 

point, we will need to extend Flog(g).w to a singular point x0 of g as well. The 

extension is not part of a general theory but is done ad hoc in [CDS88, 3.21. As 

we will see in Proposition 5.5, it is in fact the correct choice. 

Definition 2.7: Suppose ord~ o (g) # 0 and a choice of Flog(g).~ has been made. 

We define Flog(g).~(Xo ) as follows: We choose an integral F~ such that F~(xo) = O. 
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Then we choose f F~ dlog g in such a way that the integration by parts formula 

is satisfied, i.e., 

Flog(g) ~ + J F~ dlogg = log(g). F~. 

We now define Flog(g).w(Xo) : - ( f  F w dlogg)(x0). 

The motivation for this formula is that we should expect F~ log g to tend to 0 as 

x tends to x0 just as in the complex case. If everything is defined over a discrete 

valuation field, then Coleman and de Shalit show that Definition 2.7 gives the 

unique continuous extension. Another motivation is given by the following easy 

lemma 

LEMMA 2.8: With  the extension o f  Definition 2.7 the function sending (g,w) to 

Flog(a).w(x0) is bilinear in the following sense: i f  we are given forms w and ~1 and 

we choose Flog(g).~, Flog(g).v and Flog(g).(~+v) -- Flog(g).~ ÷ Flog(9).,, then 

F og(g)  (x0) + F, og(g) ,(x0) = Flo ( ) 

A similar formula holds i f  we fix w and consider functions gl, g2 and g3 = gx "g2. 

In addition, the extension coincides with the integral i f  ord~(g) = O. 

The formula (1.3) for the p-adic regulator is now clear. 

3. The syntomic regulator 

In this section we compute an explicit representative for the syntomic regula- 

tor evaluated on an element of K2 of a curve. We begin by reviewing some of 

the results of [Bes99] in the present context. Rather than discussing syntomic 

cohomology here, we will work with the mod i f i ed  s y n t o m i c  c o h o m o l o g y  in- 

troduced in [Bes99, Section 8]. 

We keep the notation introduced in the previous section but assume for the 

moment that the field K is a finite extension of Qp. Recall that  X is a smooth 

projective OK-scheme, Y is an open subscheme of X, smooth and surjective over 

OK, and that to Y one associates a basic wide open U. We fix a Frobenius 

endomorphism ¢: U -+ U. According to [Bes99, 8.6.3] there is a canonical iso- 

morphism, H2yn(X, 2) ~ ) H2ms(X, 2), which is compatible with Chern classes 

by definition. Since we will only work with this degree of cohomology there is 

no need to introduce syntomic cohomology and we may work with the modified 

variant throughout.  As Y is affine, we can write part of its modified syntomic 
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cohomology quite easily. Namely, by [Bes99, 10.1.1] we have 

H~ms(Y, i) 

= ~k w e f~'(Yg/g)log, h e f~'-l(V)/d~2'-2(V): dh = 1 - . 

The notation differs somewhat from loc. cit.: what we denote here by f~J(U) 

is denoted by ~2 j there, where A is a weak complete closure of Y in the Af ,K 
sense of Monsky and Washnitzer. Also, f~i(YK/K),og is the space of degree i 
algebraic differential forms on YK with logarithmic singularities along XK -- YK. 
We have also identified w E ~2i(YK/K)log with its pullback under U ¢-+ YK. The 

connecting map from the k-th level to the km-th level is given by 

( w , h ) ~  w,~_,  (¢*/qn)~kh . 
k s=O 

One can show directly that  this definition is independent up to isomorphism of 

all choices. In particular, it is clear that it is unchanged if we replace ¢ by some 

power Ck. 
We next recall the computation of the modified syntomic regulator for func- 

tions, i.e., Chl,l: 0~, -+ Htm~(Y, 1). We have chl,1 = -c~ so it is enough to 

compute the Chern class c~. Suppose we are given f E O~.. By replacing ¢ by 

Ck for some k if necessary we can assume f o ¢  = {q. We will find c~(f) in the 

first term of the directed system, which is given explicitly by 

{(w, h): w e f~l(YK)log, h e A(U), dh = (1 - ¢*/q)w}. 

Set fo := fq /¢* f .  Then f0 -= 1 modulo the maximal ideal of OK and therefore 
log fo E A(U) is a well defined rigid function. According to [Bes99, Prop. 10.3] 

ch~(f) := (dlog f ,  ~ log f0). 

To define regulators on symbols we need to recall the cup product in modified 

syntomic cohomology. We again only say what it is in the case we need, i.e., 

Hires(Y, 1) × Hlms(Y, 1) -~ H2s(Y, 2). In this case, according to [Bes99, 10.1.2], it 

is given on representatives as above by the formula 

hi)  u h2) = h3) 

with 

w3 = wl A w2, h3 = (1/q)hl¢*w2 - h2wl. 
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The relevant condition, which the reader may easily check for himself, for example 

using the trick below, is dh3 = (1 - ¢*/q2)w 3. This is only one of a family of 

possible homotopic cup products but we make no use of any other possibility. 

Remark 3.1: The following trick is quite helpful in computations: Consider a 

field F and two vector spaces V and W over F,  and let T and S be operators on 

V and W respectively. The polynomial ring F[t, s] acts on V ® W by letting t 

act as T ® 1 and s as 1 ® S. The operator T ® S then corresponds to the action 

of ts. We will use this in a situation where V and W are spaces of differential 

forms (or functions) and both S and T correspond to the action of Frobenius. 

Then V @ W maps to a space of differential forms and T ® S corresponds to the 

action of Frobenius on this space. This allows one to translate relations in Fit, s] 

to relations on the Frobenius action. The main example to be used in this paper 

is the relation 

1 - ~ =  1 -  q +  1 -  , 

which implies that  for a function f and a one-form w we have 

¢* 
• (1 w. 

All the above was true for Y of arbitrary dimension. In our case, taking into 

account that  Y is of relative dimension 1, we obtain the following formula for the 

Chern character evaluated on the symbol {f ,g} with f , g  E 0 ~ :  As the Chern 

character is multiplicative we have 

ch2,2({f, g}) = (dlog f ,  ( l /q)  log f0) U (dlogg, ( l /q)  logg0) = (0, r/o(f, g)), 

with 

(3.2) 7/0 (f, g) = ~ log f0 dlog ¢*g - i log g0 dlog f.  
q 

From the description of the modified syntomic cohomology above it is evident 

that  H2ms(Y, 2) ~ Ht (U) .  The naive isomorphism has to be twisted, however, to 

get the correct identification, a point which becomes clear once one considers the 

way the naive identification changes with k. The following result is a special case 

of [Bes99, 8.6.3 and 10.1.3] and is given here only to fix notation. 

PROPOSITION 3.2: There exists a natural isomorphism HI(U)  --+ H2ms(Y, 2). On 

the k-th level of the direct limit this isomorphism is given by the map 

~/~-+ (0, (1 - (¢,/q2)k)~/). 
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Proof'. It is clear that the map above commutes with all the transition maps. 

It is an isomorphism because the eigenvalues of ¢* on H 1 (U) are Weil numbers 

with absolute values ql/2 or q by [CDS88, 2.5]. I 

For easy reference we write down the resulting formula for the image of the 

regulator on the symbol {f, g} in de Rham cohomology. 

PROPOSITION 3.3: Let f ,  g 6 0~. and suppose we have chosen a Frobenius en- 
domorphism ¢ of degree q such that ] o ¢ =  fq and ~o¢ = ~q. Then the image of 
ch2,2( { f , g}) in Hi(U) is given by the class of any form y ( f  , g) E f~l(U) satisfying 

(3.3) (1 - ¢*/q2)~l(f,g) = ~lo(f,g) + d().  

Suppose now that  K = C v. While we expect the theory of modified syntomic 

cohomology to work in this case as well, a verification of this possibility requires 

some facts in rigid cohomology which are not known to us. Nevertheless, the 

explicit computations we have performed in this section do not depend on the 

assumption that  K is finite over Qp and we may simply take Proposition 3.3 as 

a definition of a modified syntomic regulator for symbols on Y. In particular, in 

the formulation of the following key result we are free to assume that  f and g 

are defined over Cp. 
We now explain the main result leading to the proof of Theorem 3. Suppose 

again that  K = Cp and denote, as in section 2, the generic fiber of X by C. For 

f ,g  E Cp(C) and x E C let tx(f ,g) be the tame symbol of f and g at x, defined 

by 
tx(f ,g)  = SJ (x). 

The tame symbol is known to satisfy the Steinberg relations and therefore to 

extend to a map t~: K2(Cp(C)) --+ C~. It is well known that an element in 

K2(Cp(C)) extends to K2(C) if and only if its tame symbols at all points of C 

are 1. 

PROPOSITION 3.4: Let f ,g  e Cp(C) and let w E H°(C,~lc/cp). Then 

aese(F~.y(f ,g))  = Z ( l o g t x ( f , g ) ) "  F~(x) + f logg .w.  (3.4) 
e6End(U) z6C J (f) 

The next two sections will be devoted to the proof of this proposition. 

We may now turn to the proof of Theorem 3. We suppose again that  K is 

finite over Qp. We first prove a lemma. 
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LEMMA 3.5: Let Y be a smooth scheme, surjective and of relative dimension 1 

over OK, and let Y '  be a closed proper subscheme. Then the composition 

(3.5) K~(Y')  --~ K2(Y) ch2,~) H2ms(y ' 2) 

is O. 

Proo£" If Y~ is supported in the closed fiber, then the result follows easily because 

K2(Y~) is torsion by [Har77]. If it is not, then, using the compatibility of the 

modified syntomic regulator with base change [Bes99, 8.8], we are reduced to 

the case where Y~ is the image of a section Spec O~ -+ Y. In particular, Y~ is 

smooth over (OK. It is well known that under this assumption we may factor the 

pushforward map in K-theory, K~(Y')  -+ K2(Y), as 

K~(Y')  TM K 2 ( Y , Y  - Y')  -+ K2(Y), 

where K2(Y, Y - Y ')  is the K-theory of Y relative to Y - Y'. It follows from the 

existence of relative syntomic Chern classes, proved in [BdJ99], that the image 

of (3.5) is. contained in the image of H2ms(Y, Y - Y' ,  2) -+ Hms(Y, 2) and it will 

therefore be enough to show that the relative modified syntomic cohomology 

group H2ms(Y, Y - Y~, 2) is trivial. The modified syntomic cohomology can be 

written as the limit of cohomologies of certain cones [Bes99, 8.6.1]. Writing the 

associated long exact sequences, which are valid also for relative cohomology, we 

get 

• .. -+ Hrlig (Ya, Y~ - Y2 /K)  -+ n2ms(V, V - Y' ,  2) 

Fil 2 H2R(YK, YK -- Y ~ / K )  - + . . . .  

The relative cohomologies on either side can be rewritten as cohomologies with 

support and since Y~ is smooth over OK we can use purity (known for rigid 

cohomology by [Ber97, Corollaire 5.7]) to get 

Htrig(Y,~, Y,~ - Y~/ K)  ~ H~ig,y. (Y~/ K ) = 0 

and 

Fil 2 H~R(YK, YK - Y ~ / K )  ~- Fil 2 H~R,y ~ (YK/K)  ~- Fil I H ° R ( Y ~ / K )  = O. | 

COROLLARY 3.6: With Y as in the previous lemma, if  s, s' E K2(Y) have the 

same restriction to K2(K(Y) ) ,  then ch2,2(s) = ch2,2(s'). 

Proof of Theorem 3: Let s E K2(Z). We can write the restriction of s to the 

function field L(Z)  as ~ { f i , g i }  with fi, gi in L(Z).  Let 7r be a uniformizer of L. 
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We may write each h E L(Z) as hi rk where k E Z and the divisor of hi does not 

include the special fiber Z~. Using that  we may rewrite the restriction to L(Z) 
as  

SlL(Z) = ~ { f i ,  gi} q- {r,  fn},  with ordz~ fi = ordz~ 9i = ordz~ f = 0. 

Furthermore, the tame symbols of SlL(Z ) must all be trivial. The tame symbol 
n Z on Z~ equals t z . ( r , f  '~) = f I , ,  so f " l z .  = 1. It follows that we may write 

f n _  1 = 7rkh where k E Z>0, h e L(Z) and ordz.  h = 0. In K2(L(Z)) we 

therefore have 

(3.6) - k { r ,  fn} : { r - k , f n }  : { r -k ( fn  _ 1), fn} : {h, fn}. 

Let Y c Z be an affine open on which fi, gi, f and h become invertible, and 

let U be the corresponding basic wide open. It follows from Corollary 3.6 that  

1 ,~ 
ch2,2(s)b. = ~_, ch2,2({fi,gi}) - -kCh2,2({h, f }) in H2s(Y, 2). 

Let [~/] be the image of s e g 2 ( z )  in H~R(ZL ), represented by the one-form 

r/. It  follows from the considerations above that 

(3.7) [r/]lv = Z [ r / ( f i ,  gi)]- 1/k[rl(h, f")]  e Hi(U). 
i 

We choose a branch of the p-adic logarithm such that log(r) = 0. This implies 

that at any point x C ZL we have l o g G ( r , f  '~) = 0. Since the tame symbols of 

SlL(Z ) are all 1 this implies that 

ElogG( f i ,9~)  = 0, for all x e ZL. (3.S) 
i 

At this point we extend scalars to C.p and set as usual C = Z%. Let w E f~l(C). 

We need to show that  

[w] U [r/] = ~ f(I,) loggi • w. 

The cup product formula of Serre tells us that the left hand side can be computed 

as ~--~xec Res~ (F~.r/). Here, F~ need only be a local integral ofw around x and the 

result is independent of the choices. If we want to write the cup product as a sum 

of terms corresponding to the decomposition (3.7), however, these independent 

choices are not sufficient because the forms ~?(fi, gi) have residues along the annuli 
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e so the result depends on the choice of local integrals. By choosing F~ to be the 

Coleman integral of w, however, this splitting, 

1 
(3.9) [w] u ['l] = E E Rese F~.  q(fi, gi) - ~. E Res~ F~.  q(h, fn),  

i eEEnd(U) eEEnd(U) 

becomes possible. This is because the Coleman integral is unique up to a constant 

and the sum of residues of a rigid form over all annuli ends is 0 by [Co189, Prop. 

4.3]. We treat the last term first. According to Proposition 3.4 we have 

E Rese F~.  ~(h, fn) = E ( l o g t x ( h  ' f n ) ) .  F~(x) + f log f~ • w. 
eEEnd(U) x6C J (h) 

While the left hand side is only defined because h and fn  are units in OF, the 

right hand side is defined for any two rational functions and it factors through 

Ks. By (3.6) we see that  the above expression equals 

-k(E(logt,(r,f~))'F~(x)+ i logfn.w)--O. 
"xEC ) 

It now follows, again by Proposition 3.4, that the right hand side of (3.9) equals 

~ ( ~ (logtx(f~, g~) ) . F~(x) + ~(i~) log g~ . w) 

The last summand is 0 by (3.8) and so the theorem is proved. I 

4. Res idues  a n d  a reciprocity law 

In this section we prove a reciprocity law, Corollary 4.11, which will be used in 
the next section to prove Proposition 3.4 and hence the main theorem. To state 

it, we will make a certain extension to the p-adic (or algebraic) notion of residue. 

We start by briefly recalling the setup, to be found in [Co189, II]. 

Detinition 4.1: An open annulus is a rigid space over C_.p isomorphic to 

A(r,s) := {x E Cp: r < Ixl < s} 

with r, s E IC~ I. A uniformizing parameter for an annulus V is a rigid function 

giving an isomorphism of V with some A(r, s). 
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Given an annulus V and a uniformizing parameter  z on V we can define residues 
OO in the usual way. A rigid form w E i l l (V)  can be written as ~ = ~ = - o o  an z~dz" 

The residue of w with respect to z is the constant  a _ >  Clearly the residue of  

dh is 0 if h E A ( V ) .  It  can be shown that  the residue is independent of the 

parameter  z up to a (unique) sign. Clearly the sign is reversed if we switch from 

z to z -1. 

Definition 4.2: An orientation of an annulus is a choice of a residue function 

Res:  i l l (U)  -+ CB, equal to the residue function with respect to some uniformiz- 

ing parameter .  The reverse orientation is given by the function - R e s .  An  

annulus together  with an orientation is called an oriented annulus. 

The residue gives an isomorphism H i ( V )  --+ C~. Suppose f :  V --+ W is a rigid 

map between oriented annuli. Since f * d A ( W )  C d A ( V ) ,  the following definition 

makes sense. 

De~nition 4.3: The degree of a map f is the unique number  d e g / s u c h  tha t  

Resy  f *w  = deg f .  Resw w. 

To extend the definition of  residues to somewhat  more general "functions" we 

make use of the following trivial linear algebra lemma. 

LEMMA 4.4: Let  F be a field o f  characteristic different from 2. Let  B be an F 

vector space and let r: B -~ F be a non-zero linear map. Suppose we are given 

a bilinear pairing ( , ) :  Ker(r)  × B -4 F whose restriction to Ker(r)  x Ker(r)  

is anti-symmetric.  Then there is a unique anti-symmetric  extension o f  ( , ) to 

B x B .  

Proo£: Suppose we are given such an extension << , >>. Choose x E B such 

tha t  r(x)  ~ O. For y, z E B we have unique ~,/3 E F and y' ,  z '  E Ser ( r )  such 

tha t  y = yr + ~x and z = z' + fix. Since <~ x, x >> -- 0 by an t i - symmetry  we 

must  have 

~< y , z  ~ = ~ y '  + c~x,z ' + ~x ~ = ~ y~,z' >> +/3<~ y~,x ~ -  ~ z ' , x  >> 

(4.1) = (y ' , z ' )  + /3 (y ' , x )  - ~ ( z ' , x ) .  

This shows uniqueness. To show existence one only has to show tha t  the formula 

(4.1) in fact defines an ant i-symmetric  bilinear extension of ( , ). Bilinearity is 

clear. To check ant i -symmetr ic i ty  we substi tute y '  = z '  and c~ = / 3  in (4.1) and 

easily get 0 using the ant i-symmetrici ty of ( , ){Ker(r)xger(r)" If  y = y'  and c~ = 0 

we get in (4.1) 

<< y, z >> = (y,  z')  + / 3 ( y ,  x)  -- (y, z), 
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which shows that  ~ , >~ indeed extends ( , ). I 

We apply this lemma to the following situation: Let V be an oriented annulus. 

We let B = f~21(V), the collection of all Coleman integrals of rigid forms on 

V. The map  r will be given by r(F) := Res(dF),  which is well defined because 

dF E f~l(V). Our pairing will be defined by (F,G) := ResFdG. This is well 

defined when r(F) = 0 as this is equivalent to F E A(V). If also G E A(V), then 

we have 

0 = Res d(FG) = Res(FdG + GdF) = (F, G) + (G, F), 

showing the anti-symmetricity. Our lemma therefore gives the following result. 

PROPOSITION 4.5: There is a unique anti-symmetric bilinear function, 

indv : / f~I(v) x / f~I(v) -+ Cp, 

such that indv(F,  G) = Resv(FdG) whenever F E A(V). 

An immediate consequence of the uniqueness is the following functoriality 

property. 

LEMMA 4.6: If  f: V --+ W is a map of oriented annuli, then for any F, G E 
f ~l(W) we have  

indv ( f 'F,  f 'G)  = deg f .  indw (F, a ) .  

In particular, i f W  ~ is the annulus W with the reversed orientation, then we have 

indw, (F, G) = - indw (F, G). 

We now globalize. Suppose U is a basic wide open in a curve C. Given 

two Coleman fimctions, F and G, such that  their restrictions to all annuli ends 

e E End(U) are of the type described above, we would like to describe the sum 

~ e  inde(F, G). The first result along these lines is 

LEMMA 4.7: I f F  E A(U) and dG E f~l(u),  then ~eeEnd(U) ind,(F, G) = 0. 

Proof'. As Reso dF = 0, for all e E End(U), we see that  ind,(F, G) = Res~(FdG) 
for all e. As FdG E 121 (U), the result follows because by [Co189, Proposition 4.3], 

for any w E ~1 (U), E e E E n d ( U ) R e s e  w = 0. I 

PROPOSITION 4.8: There is a canonical split exact sequence 

Hi(C) ; Hi(U) Res 
eE End( U ) 
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Proo~ The short exact sequence is just part of the standard long exact sequence 

in rigid cohomology 

. . . -+ (~H~g,x(X$,JCp) -+ HI(X~JCp)  -+ HI(Y~JC_~) 

--+ ~ H~g,=(X~p/Cp) -+ . . . .  

Here X and Y are the smooth Oc~ schemes that give rise to C and U as in sec- 

tion 2 and the direct sums are over all x • Xpp - Y ~ .  The first direct sum is 0 and 

in the second each summand is Cp by purity. Explicitly, we can always represent 

a cohomology class in H 1 (C) by a form of the second kind w with no poles on U. 

The map j* is then given simply by restriction to U. The map Res is given by 

7 / ~  (Rese ~/)e. Considering the action of Frobenius we see that the eigenvalues 

on H 1 (C) are, by the Weil conjectures for crystalline cohomology [KM74], alge- 

braic integers with absolute value x/q" On ~ C~ Frobenius acts as multiplication 

by q. This gives the splitting, which is easily seen to be independent of the choice 

of ¢. | 

We obtain a canonical projection p: H 1 (U) --+ H 1 (C). 

LEMMA 4.9: For any h • A(U), p(dlog h) = 0. 

Proof: First we notice that  if U' ~-+ U is an injection of basic wide open spaces 

in C, then there is a commutative diagram 

H I ( u )  ~ HI(U ') 

H I (C) - -  H 1 (C). 

We may consider an underlying affinoid Z in U and assume that Ilhlzll = 1. We 

then remove from U the residue discs of points where the reduction of hlz is 0 

and obtain a new wide open U' with an underlying affinoid on which Ihl = 1. The 

proof of [CDS88, Lemma 2.5.1] shows that for some Frobenius endomorphism ¢ 

on U' of a large enough degree q we have (¢* - q) dlog h E dA(U'). This gives 

what we want. | 

We can now state the main result of this section. 

PROPOSITION 4.10: Let F and G be Coleman functions on a basic wide open U 
such that dF, dG E f~l(U). Denote by [dF], [dG] the corresponding cohomology 
classes in H i ( u ) .  Then 

E inde(F, G) = p[dF] U p[dG]. 
e6End(U) 



Vol. 120, 2000 SYNTOMIC REGULATORS II 353 

COROLLARY 4.11: / f  h E A(U) and F is a Coleman function on U with 

dF E f~l(U), then 

E ind.(F, logh) = O. 
eEEnd(U) 

Proof of Proposition 4.10: It follows from Lemma 4.7 that setting 

([dFl,[dG]) := E inde(F,G) 
eeEnd(U) 

gives a well defined pairing ( , ) :  Hi(U) x Hi(U) -+ Cp. Let ¢: U --+ U be a 

Frobenius endomorphism of degree q, preserving all ends. It is easy to see that ¢ 

has degree q at all ends. It therefore follows from Lemma 4.6 that (¢*x, ¢*y) = 

q(x,y) for any x,y  E Hi(U). Let j* be the map from Proposition 4.8. The 

formula of Serre for the cup product on H 1 (C) implies that (j* (x), j* (y)) = x U y 

if x, y E Hi(C). All we need therefore to show is that (Hi(U),  Kerp)  = 0. This 

is now clear from weight considerations: Suppose x E Kerp.  Then ¢*x = qx, 

which implies that for any y E Hi(U) we have 

( ¢ * y , x )  = q- l (¢*  y ,¢*  x} = (y ,x} .  

Thus, pairing with x provides a Frobenius invariant functional on Hi(U). By 

Proposition 4.8 and its proof the eigenvalues of ¢ on Hi(U) are either q or 

algebraic integers with absolute value v@ The functional above must therefore 

be 0. I 

Remark 4.12: Proposition 4.10 implies the main theorem of [Co189]. In 

particular, the projection p extends the map in Theorem 4.10 there. 

PROPOSITION 4.13: Let G and H be Coleman functions on U such that G E 

A(U), dH E f~l(U) and Res~dH = 0 at all e E End(U). Let I be a Coleman 

function such that dI = HdG. Let f E A(U). Then 

E Res~GHdlogf= E inde(GH, log f )=  E ind~(I, logf) .  
eE End(U) eE End(U) eE End(U) 

Proof: The assumptions on H imply that  Hie E A(e) for all e, and therefore 

the same holds true for GH. This implies the first equality. It also shows that  

dIl~ E 9tl(e) and therefore the expression ind~(I, logf )  makes sense. We have 

GdH E ft1(U) and we can find a Coleman function J with d J  = GdH. As 

d(GH) = GdH + HdG = dJ + dI we see that GH = I + J + Const (this is 

just a complicated way to write integration by parts). Corollary 4.11 shows that 

Y~e ind~(J + Const, log f )  -- 0, giving the result. I 
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5. C o m p u t a t i o n  of  the  regulator  

To prove Proposition 3.4, and hence the main theorem, we will introduce a new 
regulator, which we will show equals each side of (3.4) in turn. 

PROPOSITION 5.1: Let U be a basic wide open, f , g  E A(U) and w E f~l(U) with 

Res~ w = 0 for a11 ends e of U. Let F~ be a Coleman integral of w and choose a 

Coleman integral f F~ dlog g. Then the expression 

p(f,g)([~]):-- ~ ind~(logf,/F~dlogg) 
eEEnd(U) 

is well defined and depends only on the cohomology class IT] E H ~ (C) c H I(U). 

It therefore defines a map p: A(U) ® A(U) --+ Hom(HI(C), Cp). 

Proof: The condition on w implies that Fwle E A(e) for all e, showing that the 
expression inde(logf, f F~ dlogg) is well defined. If w is exact, then T~ E A(U) 
hence F~ dlog g E f~l (U) and ~ e  ind~ (log f, f F~ dlog g) = 0 by Corollary 4.1 1. 

I 

Remark 5.2: Because, morally, 

p(f,  g)(iT])" = " ~ Rese, log f dlog gFw" : "[log f dlog g] U [w], 
i 

this regulator should be compared with the complex regulator (1.1). 

PROPOSITION 5.2: Let f ,  g and w be as above and let ~?(f,g) be as in 

Proposition 3.3. Then 

p(f,g)([w])= ~ ReseF~71(f,g). 
e6End(U) 

Before giving the actual proof we give a heuristic proof. This proof demon- 
strates that the proposition would be very easy if we could treat logs as good 
functions, and in particular take their residues. The actual proof repeats the 

same considerations using the local indices. 
The idea is that by the trick of Remark 3.1, and in particular (3.1), we have 

(1 
1 

-- ~ log f0 dlog¢*g + lq log f dlogg0 

= 1----~ rl([,g)+ d ( log[ loggo)+d( ) ,  
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where the last equality follows from Proposition 3.3• In other words, the two 

forms ( 1 -  ¢*/q2)(logfdlogg) and ( 1 -  ¢,/q2)r/ "have the same cohomology 

class". Now one should argue that (1 - ¢,/q2) is invertible on cohomology. Let 

us make this a bit more reasonable. We have 

¢*wU 1 -  ~=¢*wUy--wUr/= ¢ * -  wUr/. 
q 

As the same is valid with log f dlogg in place of r/and as (¢* - 1/q) is invertible 

on H 1 (C) we are done. Now for the actual proof. 

Proof of Proposition 5.3: We note first that both sides of the equation depend 

only on the cohomology class of w. We will evaluate both sides on (¢* - 1/q)w. 
Put (e, 0) = ~-]e aese F~0 for shorthand, and also r /=  r/(f,g), 71o = r/o(f,g). As 
( 1  - ¢, /q2) r /=  r/0 + d0 by (3.3) we have 

(5.1) (r/, (¢* - 1 / q ) ~ )  = (r/, ¢ * ~ )  - (1 /q2)(¢*r/ ,  ¢ * ~ )  = (r/0, ¢*~). 

Let 0 = ¢*w. Then 0 is a one-form on U whose residues along the ends of U is 

0. We have 

1 1 
<r/o, 0) = ~-~ Z Rese log foFo dlog ¢*g - q Z Rese Fo logg0 dlog f 

e e 

= ~ ~ind~(logfo, f Fodlog¢*9)+q ~ 

where we have used Proposition 4.13 to rewrite the second summand. Making 

sure that  the local indices make sense at each stage, we now have 

( : ) (r/0, 0) --- ql ~ e  ind~ log f - --q log f, Fo dlog ¢*g 

+~ind~(logf, f Fo(dlog9-~dlog9)) 
e 

* ¢* ¢* dlog g~ =~ind~(logf, f Fo~dlogg)- y~inde(qlogf, f FOq ] 
¢* dlog g)  +y~ind~(logf, fFodlogg)-~_ind~(logf, fFo-- . 

e e q 

The first and last terms cancel out, leaving us with 

=~_,ind~(l°gf, f Fodl°gg)-~_.inde(~~qlogJ',f Fo~---qdlogg), 
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and using the fact that 0 -- ¢*w and the equivariance of the local index proved 

in Lemma 4.6 

e q e 

= Z i n d e ( l o g f ,  f F(¢*-l/q),odlog9) = p ( f , g ) ( ( C * - l / q ) [ w ] ) .  
e 

Together with (5.1) we get the equation 

p(f,  9)((¢* - 1/q)[w]) = Z Res~ ~?(f, 9)F(¢._Wq)~, 
e 

proving the proposition for (¢* - 1/q)w instead of w, and therefore for any form 

in the cohomology class [(¢* - 1/q)w]. But the operator (¢* - l /q)  is invertible 

on H 1 (C) so the proposition follows. | 

The last step is to compute the local indices on an annulus e occurring in 

the definition of p(f,g)([w]) in terms of the singular points of f and 9 inside 

the corresponding disc. By scaling it is enough to consider the open unit disc 

D = {[z] < 1}. We need to recall the following. 

LEMMA 5.4: Let e = A(s, 1) C D be an open annulus. 

1. Let w be a rigid differential form on D which is analytic on e and has at 

most a finite number of poles otherwise. Then Rese w = ~ e D  Resx w. 

2. Let f • A(D)X.  Then log(f) E A(D).  

Proof'. The first part is just [Co189, Prop. 2.3]. The disc D is in particular 

a basic wide open space and e is its unique annulus end. By the first part we 

have ord~(f) := Rese dlog f = 0. It therefore follows from [Co189, Lemma 4.8] 

that I c f -  11 is bounded above by a < 1 for some c E Cp. It follows that  

log(c f )  = log c + log f is a convergent power series in cf  - 1 and is therefore 

analytic. | 

PROPOSITION 5.5: Let f and 9 be meromorphic functions on D with a finite 

number of poles and zeros. Let w E fiX(D) and choose an integral F~. Let 

e = A(s,  1) be an annulus on which both f and g are invertible. Let H be a 

Coleman function on D such that dH = log9 • w and let G = log9 • Fw - H, so 

that dG = F~ dlog 9. Then 

inde (log f ,  G) = Z (log tx (f ,  9)" F,o (z) + ordx ( f ) .  H(x)) ,  
xED 
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where we use Definition 2.7 to compute H(x) when needed. 

Proof." First we claim that the truth of the proposition is independent of the 

choice of H.  Indeed, if we replace H by H + C, where C is a constant, then G 

is replaced by G - C. With the convention of Definition 2.7 this is true even at 

the support of the divisor of g. Thus, the claim follows from 

inde(log f ,  C) = - Rese C dlog f = - C  ~ ordx(f) ,  
xED 

where the last equality follows from Lemma 5.4. Let 

S = {x C D: ordx(f)  ¢ 0 or ord~(9) ¢ 0}. 

The proof will be by induction on the size of S. When it is 0 both sides vanish, 

the right hand side trivially and the left hand side because by Lemma 5.4 both 

log f and G are analytic on D. If S ¢ I~, then we may assume that 0 C S by 

translation. When S = {0} the proof will be given below. Suppose then that  

S h a s a t  least 2elements.  Let r = m a x ~ e s l x l  and set Sr = {x E S, Ixl = r } .  

There is some t < r such that 

W := {z E D:Vx C S, I z -  x I > t} 

is a basic wide open disjoint from S. It is obtained by removing from ~1 closed 

discs Di, i = 0 , . . . , k ,  with D0 = {Izl _> 1}, Di = D[ai,t] for some a~ E D for 
k D . .  i 2 1, and such that S c Ui=l ~. Let ei, i = 0, . ,k  be the corresponding 

annuli ends of W. Then  e0 is just e with the reversed orientation. Therefore, 

Corollary 4.11 and Lemma 4.6 imply that  

inde(log f ,  G) = ~ inde, (log f ,  G). 
i=1 

This shows that  the statement of the proposition is true for D if it is true for the 

discs D(ai, t) after translation and scaling to the open unit disc. Since 0 and any 

x E Sr are not in the same disc Di, we are done by induction. 

It remains to prove the result when S = {0}. Both sides of the equation are 

bilinear in f and g (with respect to multiplication) and linear in F~. This follows 

from our claim at the beginning of the proof and from Lemma 2.8. It is therefore 

sufficient to consider the cases listed below. 
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If ordo f # 0 and ord0g = 0, then dG = Fo~ dlogg e i l l (D),  hence G e A(D). 
It follows that  

inde(log f ,  G) = - Rese G dlog f = - ordo(/)  • G(0) 

= ordo(f ) -  (g(0)  - logg(0)- F,j (0)) 

= logto(f,g). F~(O) + ordo( f ) .  H(0). 

If ordo f = 0 and ordog ¢ 0, then log f  E A(D), so 

inde (log f ,  G) = Rese log fdG = Rese log fF~ dlog g = Reso log fF~ dlog g 

= ordo(g), log f (0 ) -  F~(0) = log to(f,  g)" F~(0). 

If f ( z )  = g(z) = z and F~(0) -- 0, then we still have dG E f~l(D) so we can 

compute as in the first case. Our convention exactly says that because F~ (0) -- 0 

we have - G ( 0 )  = H(0).  It follows that 

inde(log f ,  G) = H(0) = log to(z, z ) .  F~(0) + ordo(z). H(0).  

Finally, if f(z) = g(z) = z and Fw = C, where C is a constant function, then 

dH = 0 so H is constant and G = C log z - H. It follows that 

inde(log f,  G) = inde(log z, C log z - H) 

= - i n d e ( l o g  z,  H )  = Res¢ H d log  z = H = H ( 0 ) .  

The proof is complete. I 

Proof of Proposition 3.4: Let De be the residue disc corresponding to the annulus 

e. Then 

Res¢(F~ • r/(f, g)) 
eEEnd(U) 

= ~ inde(logf, f F ~ d l o g g )  Prop. 5.3 
e6End(U) 

=- Y~ Z ((logti(f,g))" F,(x)+ ordx( f ) .  ( S  logg .w)(x)) Prop. 5.5 
e6 End(U) x6 De 

= Z( log t~( f ,  9)).Fw(x) + f _  logg 'w.  I 
xEC a(I) 
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